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SUMMARY 

An investigation was made i n  Langley tank no. 1 t o  determine the 
e f fec ts  of increasing the angle of dead rise on various hydrodynamic 
qua l i t i es  of a flying-boat hu l l  having a length-beam r a t i o  of 15. 

An increase i n  angle of dead rise from 20' t o  40' increased the 
range of s table  t r i m  between the upper and lower t r i m  l i m i t s  of s t ab i l i t y ,  
increased the range of center-of-gravity posit ion available for  satis- 
factory take-off s t ab i l i t y ,  and substant ia l ly  improved the spray charac- 
t e r i s t i c s .  The water resistance w a s  increased appreciably i n  the planing 
range so tha t  the take-off tjme and distance were increased approximately 
25 percent and 30 percent, respectively. The over-all  rough-water landing 
behavior w a s  improved,. The maximum ve r t i ca l  and angular accelerations 
w e r e  reduced approximately 55 and 30 percent, respectively. 

INTRODUCTION 

The development of high-speed water-based a i r c r a f t  with the accom- 
panying high wing loadings and s t a l l i n g  speeds has made the problem of 
hydrodynamic impact loads of increasing importance. Tank investigations 
of powered dynamic models have shown that appreciable reductions i n  accel- 
erations are possible by increasing the h u l l  length-beam r a t i o .  A n  
increase i n  hul l  length-beam r a t i o  from 6 t o  15 reduced the maximum 
ve r t i ca l  accelerations i n  waves approximately 25 percent without de t r i -  
ment t o  the other hydrodynamic qua l i t i es  (references 1 and 2 ) .  These 
accelerations were fur ther  reduced by warping the  forebody, by extending 
-the afterbody, and by a combination of these h u l l  modifications (refeq- 
ences 3, 4, and 5 ,  respectively).  
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Impact theory (referenc 
ence 7) on a prismatic f l o a t  
c iable  reduction i n  t h e  hydro 
angle of dead rise. The t ank  inv 
t e r i s t i c s  of hu l l s  having a 
extended t o  include the e f f ec t  of an increase i n  the  angle of dead r ise ,  
not only on the  rough-water accelerations and motions but a lso.on the  
over-all hydrodynamic charac te r i s t ics  of a hull having a length-beam 
r a t i o  of l'j. 

The model w a s  the  same as that used f o r  the investigations 
described i n  references 1 ahd 2 with the exception of the basic angle 
of dead rise which w a s  increased from 20° t o  bo. The model w a s  
assumed t o  be a - - s i z e  powered dynamic model of a twin-engine, 

propeller-driven f ly ing  boat.having a gross weight of 75,000 pounds, 
a gross-load coeff ic ient  of 5.88, a wing loading of 41.1 pounds per 
square foot,  and a power loading for  take-off of 11.5 pounds per brake 
horsepower. The hydrodynamic qua l i t i es  determined i n  the investigation . 
were longitudinal s t a b i l i t y  during take-off and landing, spray charac- 
t e r i s t i c s ,  take-off performance i n  smooth water, and the landing 
behavior i n  waves. 

1 
10 

SYMBOLS 

gross-load coeff ic ient  (h/wb3) % 
43 gross load, pounds 

b maximum beam of hull ,  f e e t  

g 

nV v e r t i c a l  acceleration, g un i t s  

U angular acceleration, radians per second 

w 

acceleration due t o  gravity (32.2), f e e t  per second2 

2 

specif ic  weight of w a t e r  (63.2 for  these tests, usually taken 
as 64.0 fo r  sea water), pounds per cubic foot 

v 

VV 

iage speed (appro 95 percent of airspeed),  f e e t  per second 

sinking speed, f ee t  per second 

ht-path angle, degrees 



NACA TN 2297 3 

Ee elevator deflection, degrees 

7 t r i m  (angle between forebody keel a t  s tep  and horizontal) ,  
degrees 

7L landing t r i m  ( t r i m  a t  contact) ,  degrees 

T 

a 

excess thrust (thrust available fo r  accelerat ion) ,  pounds 

longitudinal acceleration, f e e t  per second2 

DESCRIPTION OF MODEL AND APPARATUS 

The model (Langley tank model 266) used fo r  t h i s  investigation 
was a modified version of Langley tank moael 224 (reference 2) ,  the 
modification being an increase i n  the basic  angle of dead r i s e  from 
20° t o  bo on both forebody and afterbody. 
l i n e s  of the model are shown i n  f igures  1 and 2. The general 
arrangement of the f ly ing  boat i s  shownin f igure 3, and the of fse t s  
for  the hul l  a re  presented i n  tab le  I. 

Photographs and hu l l  

I n  deriving the hu l l  having the 40' angle of dead r i s e ,  the plan 
form and prof i le  (except f o r  the chine l i n e )  were maintained ident ica l  
t o  those of the basic  hu l l  with the 20' angle of dead r i s e .  A constant 
angle of dead rise of 40' w a s  maintained from the s tep  ( s t a t i o n  12) 
forward t o  s t a t ion  7. From s t a t ion  7 forward t o  the forward perpendic- 
u la r ,  the angle of dead rise w a s  uniformly increased so tha t  a t  the 
forward perpendicular the angle of dead r i s e  was the same as that of 
the basic forebody. A t  each s t a t ion  between 2 and 12, 
the r a t i o  of the f la red  chine height above the base l i n e  t o  that of 
the unflared chine height w a s  the same as tha t  of the basic forebody. 
The r a t i o  varied s l igh t ly  from s t a t ion  2 t o  the forward perpendicular 
t o  give smooth fa i r ing .  

(See f i g .  4.) 

The invest igat ion w a s  conducted i n  Langley tank no. 1, which i s  
described i n  reference 8. 
models i s  described i n  reference 9. The setup of the model on the 
towing carriage i s  shown i n  f igyre 5 .  
the pivot, which w a s  located a t  the center of gravi ty  and w a s  f r ee  t o  
move ve r t i ca l ly  but w a s  res t ra ined l a t e r a l l y  and i n  roll and yaw. 
the self-propelled-model t e s t s  i n  waves, the model had approximately 
3 f ee t  of fore-and-aft freedom with respect t o  the towing carriage i n  
order t o  absorb the  horizontal accelerations introduced by impacts. 
The longitudinal forces on the model were measured by use of' a resis tance 
dynamometer connected t o  the towing gear. 

The apparatus used fo r  the towing of dynamic 

The model w a s  f r ee  t o  t r i m  about 

For 



4 NACA TN 2297 

A strain-gage-type accelerometer mounted on the towing s t a f f  of 
the model measured the v e r t i c a l  accelerations.  Two accelerometers of 
t h i s  type w e r e  used t o  measure the angular accelerations.  These 
accelerometers, mounted 1 foot apart ,  were located within the model 
i n  such a manner that t h e i r  centers of gravity were i n  l i n e  with the 
center of gravity of the model. I n  the s t a t i c  condition, a l l  acceler-  
ometers read zero. The natural frequencies of the strain-gage acceler- 
ometers and the recording galvanometers used with the strain-gage 
accelerometers were about 180 and 40 cycles per second, respectively. 
The accelerometers w e r e  damped t o  approximately 0.7 of t h e i r  c r i t i c a l  
values and the recordzng galvanometers t o  approximately 0; 65 of t h e i r  
c r i t i c a l  values. The frequency-response curve of the strain-gage- 
accelerometer and recording-galvanometer system w a s  f l a t  within 
+5 percent between 0 and 21 cycies per second. 

Slide-wirb pickups were used t o  measure the t r i m ,  rise, and fore- 
and-aft posit ion of the model. An e l e c t r i c a l l y  actuated t r i m  brake 
attached t o  the towing s t a f f  f ixed the t r i m  of the model i n  the air  
during the landing approach. The t r i m  brake w a s  automatically 
released when t h e  hull came i n  contact with the water. E lec t r i ca l  
contacts were located at the sternpost, step,  and at a point approxi- 
mately 40 percent of the forebody length a f t  of the forward perpen- 
dicular  i n  order t o  indicate when these par t s  of the model contacted 
the water. Wave struts, located forward and a f t  of the model and 
displaced l a t e r a l l y  from the center l i n e  of the tank, were used t o  
record the wave prof i les  and wave length. The apparatus for  gener- 
a t ing  waves i s  described i n  reference 1. 

PROCEDURE 

A detai led description of the procedure followed i n  obtaining the 
hydrodynamic qua l i t i es  covered i n  t h i s  investigation i s  presented i n  
references 1 and 2. The hydrodynamic qua l i t i es  determined include: 
trim l i m i t s  of s t a b i l i t y ,  the range of center-of-gravity posi t ion for  
sa t i s fac tory  take-off s t a b i l i t y ,  smooth-water landing sf;abil i ty,  take- 
off performance, bow spray charac te r i s t ics  during take-off, ta i l  spray 
charac te r i s t ics  during landings, and impact accelerations and landing 
behavior i n  rough water. 

The hydrodynamic qua l i t i es  were determined a t  a design gross  load 
corresponding t o  75,ODO pounds, except for  the spray investigation i n  
which gross loads fro= 65,000 pounds t o  95,000 pounds w e r e  included. 
The f l aps  were deflected 20° f o r  a l l  the  hydrodynamic t e s t s .  
th rus t  was used i n  determining the hydrodynamic qua l i t i es  i n  a l l  t e s t s  
with the exception of the landing tests. The landidgs i n  smooth water 

Ful l  
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were made with approximately half thrust; whereas those i n  rough w a t e r  
were made with the th rus t  so adjusted t h a t  the  model w a s  self-propelled 
during most of the landing run. Landing and spray t e s t s  were made with 
the center of gravity a t  32 percent mean aerodynamic chord. A l l  data  
a re  presented as  f u l l - s i z e  values with the exception of the data i n  
tab le  I1 which are  model values. 

RESULTS AND DISCUSSION 

Longitudinal S t a b i l i t y  

T r i m  l i m i t s  of s t ab i l i t y . -  The t r i m  limits of s t a b i l i t y  fo r  the 
hul l  having the 40" angle of dead r i s e  a re  presented i n  figure 6 
together with those fo r  the basic hul l  having a 20° angle of dead r i s e .  
The lower l i m i t  f o r  the hu l l  with the 40' angle of dead rise w a s  f i r s t  
encountered a t  a higher speed and lower t r i m  than that fo r  the hu l l  
with the 20' angle of dead r i s e .  
remained substant ia l ly  the same. This behavior i s  not i n  agreement 
with the r e su l t s  reported i n  reference 10, which s t a t e s  t ha t  the lower 
t r i m  l i m i t  should be raised by an increase i n  angle of dead r i s e .  I n  
the invest igat ion described i n  reference 10, however, simple planing 
surfaces having dead-rise angles up t o  30° and no chine f l a r e ,  were 
used. 
the lower t r i m  l i m i t ,  the trend noted i n  f igure 6 may be due t o  the 
greater effectiveness of the chine f l a r e  on the hu l l  with the  40' angle 
of dead rise. 

A t  planing speeds, the lower l i m i t  

Since unpublished data indicate that chine f l a r e  tehds t o  lower 

The upper t r i m  l i m i t s  (both upper and lower branches) were raised 
by the increase i n  angle of dead r i s e .  This increase conforms t o  the 
trend reported i n  a previous investigation (reference 11) of the e f f ec t  
of angle of dead rise on high-angle porpoising charac te r i s t ics  of two 
simple planing surfaces i n  tandem. A t  trims and speeds corresponding 
t o  the upper t r i m  l i m i t ,  the wetted length on the forebody i s  small 
and the influence of possible differences i n  the e f f ec t  of chine f l a r e  
on t h i s  l i m i t  probably would be small. Agreement with r e su l t s  from 
tests of simple planing surfaces, therefore, might be expected. 

Center-of-gravity l i m i t s  of s t ab i l i t y . -  Typical t r i m  tracks f o r  
the hu l l  with 40° angle'of dead rise covering a range of elevator 
def lect ion and center-of-gravity posit ion are  presented i n  f igure 7(a). 
Comparable p lo ts  fo r  the hu l l  with the 203 angle of dead r i se  a re  
shown i n  f igure 7 (b ) .  
take-off were obtained from such data  and have been plot ted against  
center-of-gravity posit ion i n  f igure 8. 
porpoising i s  defined as the difference between the maximum and 

The maximum amplitudes of porpoising during 

The maximum amplitude of 
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minimum trims during the greatest  porpoising cycle t h a t  occurred during 
a take-off. Figure 8 shows only the forward l i m i t  since the maximum 
amplitude of upper-limit porpoising (after l i m i t )  never exceeded 1'. 

The prac t ica l  center-of-gravity l i m i t  f o r  a given elevator deflec 
t i o n  i s  usually defined as that position of the center of gravity a t  
which the amplitude of porpoising becomes 2 O .  Such a l i m i t  has been 
determined from figure 8 and i s  shown as f igure 9 together with the 
pract ical  center-of-gravity l i m i t  f o r  the hul l  with the 20' angle of 
dead rise. Increasing the angle of dead r ise  shif ted the forward 
center-of-gravity l i m i t  forward over the en t i r e  range of elevator 
deflection and since there w a s  no pract ical  aft  l i m i t  over the range 
of center-of -gravity posit ion investigated, the s table  range w a s  sub- 
s t an t i a l ly  increased. 

Landing s t ab i l i t y . -  Several typical  time h i s to r i e s  of smooth-water 
landings for  the model with the bo angle of dead r ise  are presented i n  
figure l O ( a ) .  Comparable records for the basic hul l  with the 20° angle 
of dead r i s e  are presented i n  figure 10(b). 
maximum and minimum values of t r i m  and rise a t  the greatest  cycle of 
osc i l la t ion  w e r e  obtained and these data are plotted against  t r i m  a t  
f irst  contact i n  figure 11. The amplitude of o sc i l l a t ion  i n  t r i m  and 
r i se  w a s  approximately the same for  both hul ls .  No skipping tendency 
w a s  obtained for the  hu l l  with the 40' angle of dead rise over a range 
of landing t r i m  from 4' t o  12'; therefore, it w a s  concluded that  the 
depth of s tep  (16.5 percent beam) provided adequate vent i la t ion.  

From such records the 

Comparison of the records for  both models indicates t h a t  the 
number of cycles necessary for  the recovery from porpoising w a s  less 
fo r  the hu l l  with 40' arlgle of dead rise.  
cycles might be a t t r ibu ted  t o  the increased damping ef fec t  caused by 
the deeper penetration of t h i s  hu l l .  

This reduction i n  number of 

Spray Characterist ics 

The spray character is t ics  of the hul l  with an  angle of dead rise 
of 40' are presented i n  figures 12 t o  15, along with comparative p lo ts  
and photographs for  the hul l  with an angle of dead rise of 20'. 
design gross load, the hu l l  w i t h  the 400 angle of dead r ise  had no 
heavy spray on the f laps  and the speed range over, which heavy propeller 
spray occurred w a s  reduced. (See f igs .  12, 13, and 14.)  Photographs 
of the spray s t r ik ing  the horizontal-tail  surfaces during a landing 
run are presented i n  figure 17. The forebody spray from both hulls 
struck the horizontal- ta i l  surfaces a t  high speeds but the spray 
appeared t o  be less severe for  the hul l  with the high dead-rise angle. 

A t  
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The increase i n  angle of dead r i s e  resulted i n  a very def in i te  
over-all improvement i n  the spray characterist ics.  These improvements 
would be expected on the basis  of r e s u l t s  of a previous investigation 
of the e f f e c t  of increase i n  angle of dead rise on a conventional h u l l -  
(reference 12) .  

Take-Off Performance 

The excess thrus t  and t r i m  during take-off with f u l l  th rus t  f o r  
the hul l  with an angle of dead r i s e  of bo a r e  shown i n  figure 16 
together with a comparative plot  for  the hul l  with an angle of dead 
rise of 20'. The curves represent the excess thrust  and t r i m  for  
m h i m u m  t o t a l  resistance except i n  the  speed range where porpoising 
w a s  encountered. Over t h i s  speed range the t r i m  w a s  increased above 
t h a t  f o r  minimum resistance t o  avoid the lower t r i m  l i m i t  of s t a b i l i t y .  
Because of a change i n  the instrumentation f o r  measuring horizontal 
forces, the excess thrus t  presented for the basic hul l  d i f f e r s  s l i g h t l y  
from t h a t  recorded i n  refereme 2. 

Comparison of the excess thrust  for  both hul ls  indicates that the 
increase i n  angle of dead rise raised the water resistance over the 
en t i re  take-off run. I n  the planing region, the excess thrus t  w a s  
reduced approximately 30 percent. The t r i m  f o r  m i n i m u m  resistance 
remained approximately the same for  both hul ls  throughout the take-off 
run with a maximum variat ion of l e s s  than 1' occurring a t  hump speed. 

The longitudinal acceleration during take-of€ i s  plotted against  
speed i n  f igure 17. The acceleration was derived from the excess- 
thrust  curve i n  f igure 16 by use of the relationship 

The take-off t i m e  w a s  determined from the area under the curve 
of plotted against  speed, and the take-off distance from the 
area under the curve of V / a  plotted against  speed. Increasing the 
angle of dead r i s e  from 20° t o  40° increased the take-off time and 
distance from 20 seconds and 1400 fee t  t o  25 seconds and 1850 fee t ,  
or approximately 25 and 30 percent, respectively. 

l/a 

Rough-Water Landing Characterist ics 

D a t a  obtained from records made during landings i n  w w e s  are 
presented i n  table 11. Information regarding the i n i t i a l  impact and 
the subsequent impacts which produced the maximum ver t ica l  and angular 
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accelerations with the corresponding t r i m s  a t  contact, sinking speeds, 
and f l ight-path angles i s  included i n  t h i s  table .  The maximum accelera- 
t ions a re  plotted against  wave length i n  figures 18 and 19 together with 
the envelopes of similar data for  the hul l  with an angle of dead r i s e  of 
20' (reference 1). 
the t h i r d  and s i x t h  impact. 

The maximum accelerations usually occurre& between 

The increase i n  angle of dead rise from 20' t o  bo reduced the 
peak maximum v e r t i c a l  accelerations approximately 55 percent. I n  
smooth water, the hydrodynamic impact loads f o r  a prismatic f l o a t  
having an angle of dead r i s e  of 40' ( f ig .  8 of reference 7) were 
approximately 50 percent lower than those f o r  a h u l l  having an angle 
of dead r i s e  of 20°, and the experimental values were i n  good agree- 
ment with those predicted on the basis  of impact theory (reference 6 ) .  
f n  rough water, the hydrodynamic impact loads f o r  prismatic f l o a t s  
a lso were i n  good agreement with the loads predicted on the basis  Of 
impact theory (reference 1 3 ) .  The e f f e c t  of increase i n  angle of dead 
rise of the high-length-beam-ratio hull ,  therefore, w a s  i n  good agree- 
ment with the e f fec t  expected on the basis  of Langley impact basin 
experimental r e s u l t s  and on the basis  of impact theory. The e f f e c t  of 
wave length on the v e r t i c a l  accelerations was not so pronounced with 
the hul l  having the high angle of dead r i s e  as with t h e ' h u l l  having 
the 20' angle of dead r i s e .  

The maximum posit ive angular acceleration (bow rotated upward) of 
8.7 radians per second per second, encountered by the hul l  with the 
40' angle of dead r i s e ,  w a s  approximately 30 percent l e s s  than the 
maximum positive angular acceleration encountered by the hul l  with the 
20° angle of dead r i s e .  Increase i n  the angle of dead r i s e  had l i t t l e  
e f fec t  on the maximum negative angular accelerations. 

The maximum and minimum values of the t r i m  and r i s e  a t  the greatest  
cycle of osc i l la t ion  during each landing i n  waves a r e  plotted against 
wave length i n  f igure 20. The increase i n  angle of dead r i s e  had re la -  
t ive ly  l i t t l e  e f fec t  on the amplitude of t r i m  osc i l la t ion  a t  the greatest  
cycle. The maximum r i s e  for  the h u l l  with a 40' angle of dead r i s e  w a s  
reduced as compared with that for  the hul l  with the 20' angle of dead 
r i s e .  The minimum r i s e  w a s  increased s l igh t ly .  

Summary C h a r t  

A summary of the hydrodynamic qua l i t i es  of a hul l  having a high 
angle of dead rise, as determined by the powered-dynamic-model tests, 
i s  presented i n  figure 21. This chart  gives an over-all  picture i n  
terms of ful l -scale  operational parameters and i s  therefore useful for  
comparisons with similar data regarding other seaplanes for  which 
operating experience i s  available. 
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CONCLUSIONS 

9 

A comparison of the hydrodynamic qual i t ies  of a high-length-beam- 
r a t i o  hul l  having an angle of dead rise of 40’ with those for  a similar 
hu l l  having a 20’ angle of dead r i s e  indicates that the increase i n  
angle of dead r i s e  gave the following resul ts :  

1. The s table  range of t r i m  between the upper and lower t r i m  
limits of s t a b i l i t y  w a s  increased over the e n t i r e  speed range t o  
take -off 

2. The forward center-of-gravity l i m i t  w a s  moved forward and 
since there was no a f t  center-of-gravity l i m i t ,  the s table  range w a s  
substantially increased. 

3. The smooth-water landing s t a b i l i t y  was approximately the same 
f o r  both hulls.  No skipping tendency w a s  noted over the range of 
landing t r i m  investigated. 

4. The spray character is t ics  were substant ia l ly  improved. A t  
design gross load there w a s  no heavy spray on the f laps  and the speed 
range for  heavy propeller spray w a s  s l igh t ly  reduced. The spray on 
the t a i l  surfaces was s l igh t ly  improved. 

5 .  The water resistance w a s  increased appreciably i n  the planing 
range so  t h a t  the take-off time and distance were increased approxi- 
mately 25 and 30 percent, respectively. 

6. The rough-water landing c’mracterist ics were greatly improved. 
The maximum v e r t i c a l  and angular accelerations were reduced approximately 
55 and 30 percent, respectively. 

Langley Aeronautical Laboratory 
National Advisory Committee f o r  Aeronautics 

Langley A i r  Force Base, V a . ,  November 9, 1930 
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Figure 3.- General arrangement. 
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Figure 6.- Trim U t s  of stability. 
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Figure 7 .- Variation of trim with speed. 
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Figure 8.- M a x i m  amplitude of porpoising at different 
positions of  the center of gravity; Wo angle of dead 
r i s e ,  
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Figure 1 1 ~  Variation of maximum and minimum trim 
and rise with trim at contact. 
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(b) 20' angle of dead rise. 

Figure 13.- Spray in propellers during take-off. 
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(b) 2.3' angle of dead rise. 

Figure 14.- Spray on flaps during take-off. 
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Figure 15.- Spray on ta i l  surfaces during landing. 
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Figure 16.- Variation of excess thrust and trim with speed during take-off. 
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Figure=.- Variation of m a x i m  and m i n i m  trim and rise 
with wave length. Wave height, 4 feet .  
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